Charles Brenner, PhD
Alfred E Mann Family Foundation Chair
Department of Diabetes & Cancer Metabolism
Arthur Riggs Diabetes & Metabolism Research Institute and
Co-leader, Molecular and Cellular Biology of Cancer Program
Beckman Research Institute
City of Hope
Duarte, CA 91010 USA

Education

Professional Experience

  • 1983-1985 Research Associate for Anthony J. Brake
    Chiron Corporation, Emeryville, CA
  • 1986-1988 Research Associate for Kunihiro Matsumoto
    DNAX Research Institute, Palo Alto, CA
  • 1996-2000 Assistant Professor of Microbiology & Immunology
    Jefferson Medical College
    Member, Program in Structural Biology, Kimmel Cancer Center
  • 2000-2003 Associate Professor of Microbiology & Immunology
    Jefferson Medical College
    Director, Structural Biology & Bioinformatics Program, Kimmel Cancer Center
    Thomas Jefferson University, Philadelphia, PA
  • 2003-2007 Associate Professor of Genetics and of Biochemistry
    Dartmouth Medical School
  • 2003-2008 Director, Cancer Mechanisms Program
    Norris Cotton Cancer Center
  • 2005-2009 Scientific Director
    Comprehensive Thoracic Oncology Program
    Dartmouth-Hitchcock Medical Center
  • 2007-2009 Professor of Genetics and of Biochemistry
    Dartmouth Medical School
  • 2008-2009 Associate Director for Basic Sciences
    Norris Cotton Cancer Center, Lebanon, NH
  • 2009-2020 Professor and Head of Biochemistry
    Carver College of Medicine
    University of Iowa, Iowa City, IA
  • 2010-2020 Professor of Internal Medicine and Roy J. Carver Chair in Biochemistry
    Carver College of Medicine
    University of Iowa, Iowa City, IA
  • 2011-2020 Founding Co-Director, Obesity Research and Education Initiative
    Office of the Provost
    University of Iowa, Iowa City, IA
  • 2020 – Present Founding Alfred E. Mann Family Foundation Chair, Department of Diabetes & Cancer Metabolism
  • 2020 – Present Co-founder, Alphina Therapeutics
  • 2022 – Present Co-founder, Juvenis
  • 2023 – Present Founder, NR Unlimited

Selected Honors and Awards

  • 1979-1980 Connecticut State Scholar
  • 1979-1983 National Merit Scholar
  • 1988-1992 Program in Cancer Biology trainee of the NCI
  • 1993-1996 Fellow of the Leukemia Society of America
  • 1994 Leukemia Society of America Short-Term Scientific Exchange Award
  • 1998-2000 Basil O’Connor Scholar of the March of Dimes Birth Defects Foundation
  • 1998-2000 Beckman Young Investigator of the Arnold and Mabel Beckman Foundation
  • 1998-2001 Burroughs Wellcome Fund New Investigator in the Basic Pharmacological Sciences
  • 2007 William E.M. Lands Lecturer in Nutritional Biochemistry, University of Michigan
  • 2008-2009 Lung Cancer Research Foundation Award
  • 2010- present Roy J. Carver Chair of Biochemistry
  • 2012 Holden Comprehensive Cancer Center Oberley Award
  • 2013 Fellow of the American Association for the Advancement of Science
  • 2014 State of Iowa Regents Award for Faculty Excellence
  • 2015 Ackerson Student Lecturer in Biochemistry & Redox Biology, University of Nebraska
  • 2015 Keynote Lecturer at the Brown University Pathobiology Retreat
  • 2016 ASBMB Award for Exemplary Contributions to Education
  • 2016 CNIO Distinguished Lecturer, Madrid
  • 2018 Dartmouth Technology Transfer Innovation and Commercialization Award
  • 2018 Keynote Lecturer at 15th International Symposium on Milk Genomics & Human Health, Sacramento
  • 2019 Keynote Lecturer at  Norway AGE Conference on NAD, Oslo
  • 2020 Mary Swartz Rose Senior Investigator Award, American Society of Nutrition
  • 2023 Fellow of the American Society of Biochemistry and Molecular Biology

National Service

  • 1998 Organizer of Wesleyan University Alumni Symposium on Biology and the New Pharmacopaeia
  • 2004-2007 F04B, Biophysical and Biochemical Sciences Fellowship Study Section, National Institutes of Health
  • 2004 Structural Biology Program, Department of Energy
  • 2005-2007 Beckman Young Investigator Review Committee, Arnold and Mabel Beckman Foundation
  • 2008 American Federation for Aging Research National Scientific Advisory Council
  • 2008-2012 ICP1, International Cooperative Projects Study Section, National Institutes of Health
  • 2009-2012 ASBMB Publications Committee (chair, 2011-2012)
  • 2014-present Scientific Advisory Board, ChromaDex, Inc
  • 2016-2017 Co-founder and Chief Scientific Advisor, Prohealthspan, LLC
  • 2016-2020 INMP, Integrated Nutrition & Metabolic Processes Study Section, National Institutes of Health
  • 2017-2019 Scientific Advisory Board, Cytokinetics, Inc
  • 2017-present Chief Scientific Advisor, ChromaDex, Inc

Teaching

  • 1997-2003 Yeast Transformation section of BI532
  • 1997-2003 X-ray Crystallography section of PR613 including the Difference Patterson Function
  • 1999-2003 Yeast Genetics section of GE611
  • 1999-2003 Yeast Cell Cycle and Cell Cycle Checkpoints section of GE636
  • 2004-2009 NAD+ Metabolism section of the MCB Core Course
  • 2005-2008 Genetics 144, Oncogenomics
  • 2005-2007 Yeast Genetics section of the MCB Core Course
  • 2010-2018 Carbohydrate Metabolism Section of BIOC:3120
  • 2019-2020 Lipid and nucleotide metabolism section of BIOC:3130

Publications

  1. A. Brake, C. Brenner, R. Najarian, P. Laybourn & J. Merryweather, “Structure of Genes Encoding Precursors of the Yeast Peptide Mating Pheromone a-Factor” Protein Transport and Secretion, M. J. Gething, ed., pp. 103-108 (1985) reprint
  2. I. Miyajima, M. Nakafuku, N. Nakayama, C. Brenner, A. Miyajima, K. Kaibuchi, K. Arai, Y. Kaziro & K. Matsumoto, “GPA1, A Haploid-Specific Essential Gene, Encodes a Yeast Homolog of Mammalian G Protein Which May Be Involved in Mating Factor Signal Transduction,” Cell, v. 50, pp. 1011-1019 (1987) reprint
  3. C. Brenner, N. Nakayama, M. Goebl, K. Tanaka, A. Toh-e & K. Matsumoto, “CDC33 Encodes mRNA Cap-Binding Protein eIF-4E of Saccharomyces cerevisiae,” Molecular and Cellular Biology, v. 8, pp. 3556-3559 (1988) reprint
  4. K. Matsumoto, M. Nakafuku, N. Nakayama, I. Miyajima, K. Kaibuchi, A. Miyajima, C. Brenner, K. Arai & Y. Kaziro, “The Role of G Proteins in Yeast Signal Transduction,” Cold Spring Harbor Symposia on Quantitative Biology, v. 53, pp. 567-575 (1988) reprint
  5. R.S. Fuller, C. Brenner, P. Gluschankof & C.A. Wilcox, “The Yeast Prohormone-Processing Kex2 Protease, an Enzyme with Specificity for Paired Basic Residues,” in Methods in Protein Sequence Analysis, Jornvall, H., Hoog, J.-O. & Gustavsson, A.-M., pp. 205-214 (1991) reprint
  6. C. Brenner & R.S. Fuller, “Structural and Enzymatic Characterization of a Purified Prohormone-Processing Enzyme: Secreted, Soluble Kex2 Protease,” Proceedings of the National Academy of Sciences, v. 89, pp. 922-926 (1992) reprint
  7. H. Angliker, P. Wikstrom, E. Shaw, C. Brenner & R.S. Fuller, “The Synthesis of Inhibitors of Processing Proteases and Their Action on the Kex2 Protease of Yeast,” Biochemistry Journal, v. 293, pp. 75-81 (1993) reprint
  8. C. Brenner, A. Bevan & R.S. Fuller, “One-Step Site-Directed Mutagenesis of The Kex2 Protease Oxyanion Hole,”Current Biology, v. 3, pp. 498-506 (1993) reprint
  9. C. Brenner, A. Bevan & R. S. Fuller, “Methods for Analyzing the Specificity and Activity of a Prohormone-Processing Enzyme, the Yeast Kex2 Protease (Kexin),” Methods in Enzymology, v. 244, pp. 152-167 (1994). Download reprint
  10. C. Brenner, “Reducing the Energy Barrier to Crystallization, review of Crystallization of Nucleic Acids and Proteins,” Protein Science, v. 3, pp. 2471-2472 (1994) reprint
  11. H. Diefenbach-Jagger, C. Brenner, B.E. Kemp, W. Baron, J. McLean, T.J. Martin & J.M. Moseley, “Arg21 is the Preferred Kexin Cleavage Site in Parathyroid-Hormone-Related Protein,” European Journal of Biochemistry, v. 229, pp. 91-98 (1995) reprint
  12. C. Brenner, P. Garrison, J. Gilmour, D. Peisach, D. Ringe, G.A. Petsko & J.M. Lowenstein, “Crystal Structures of Hint Demonstrate that Histidine Triad Proteins are GalT-related Nucleotide-Binding Proteins,” Nature Structural Biology, v. 4, pp. 231-238 (1997). View Hint-GMPHint-AdenosineHint-8-Br-AMPApo-Hint entries at the Protein Data Bank.  reprint
  13. C. Brenner, H.C. Pace, P.N. Garrison, A.K. Robinson, A. Rosler, X.H. Liu, G.M. Blackburn, C.M. Croce, K. Huebner & L.D. Barnes, “Purification and Crystallization of Complexes Modeling the Active State of the Fragile Histidine Triad Protein,” Protein Engineering, v. 10, pp. 1461-1463 (1997) reprint
  14. G.M. Blackburn, X. Liu, A. Rosler & C. Brenner, “Two Hydrolase Resistant Analogues of Diadenosine 5′,5”’-P1,P3-triphosphate for Studies with Fhit, the Human Fragile Histidine Triad Protein,” Nucleosides and Nucleotides, v. 17, pp. 301-308 (1998) reprint
  15. H.C. Pace, P.N. Garrison, A.K. Robinson, L.D. Barnes, A. Draganescu, A. Rosler, G.M. Blackburn, Z. Siprashvili, C.M. Croce, K. Huebner & C. Brenner, “Genetic, Biochemical and Crystallographic Characterization of Fhit-Substrate Complexes as the Active Signaling Form of Fhit,” Proceedings of the National Academy of Sciences, v. 95, pp. 5484-5489 (1998). View Fhit-IB2, Fhit H96N-IB2 entries at the Protein Data Bank. reprint
  16. Y. Pekarsky, M. Campiglio, Z. Siprashvili, T. Druck, Y. Sedkov, S. Tillib, A. Draganescu, P. Wermuth, J.H. Rothman, K. Huebner, A.M. Buchberg, A. Mazo, C. Brenner & C.M. Croce, “Nitrilase and Fhit Homologs are Encoded as Fusion Proteins in Drosophila melanogaster and Caenorhabditis elegans,” Proceedings of the National Academy of Sciences, v. 95, pp. 8744-8749 (1998) reprint
  17. A. Bevan, C. Brenner & R.S. Fuller, “Quantitative Assessment of Enzyme Specificity in vivo: P2 Recognition by Kex2 Protease Defined in a Genetic System,” Proceedings of the National Academy of Sciences, v. 95, pp. 10384-10389 (1998) reprint
  18. X. Liu, C. Brenner, A. Guranowski, E. Starzynska & G.M. Blackburn, “New Tripodal, ‘Supercharged Analogs’ of Adenosine Nucleotides: Inhibitors for the Fhit Ap3A Hydrolase,” Angewandte Chemie International Edition, v. 38, pp. 1244-1247 (1999) reprint
  19. C. Brenner, “Fhit-Substrate Complexes: A New Paradigm in Reversible Protein Phosphorylation,” Proceedings of the XIVth International Conference on Phosphate Chemistry, Phosphorus, Sulfur and Silicon, v. 144-146, pp. 745-748 (1999) reprint
  20. K. Huebner, G. Sozzi, C. Brenner, M.A. Pierotti & C.M. Croce, “Fhit Loss in Lung Cancer: Diagnostic and Therapeutic Implications,” Advances in Oncology, v. 15, pp. 3-10 (1999) reprint
  21. M.J. Fernandes, A.A. Finnegan, L.D. Siracusa, C. Brenner, N.N. Iscove & B. Calabretta, “Characterization of a Novel Receptor that Maps Near the Natural Killer Gene Complex: Demonstration of Carbohydrate Binding and Expression in Hematopoietic Cells,” Cancer Research, v. 59, pp. 2709-2717 (1999) reprint
  22. C. Brenner, P. Bieganowski, H.C. Pace & K. Huebner, “The Histidine Triad Superfamily of Nucleotide-Binding Proteins,” Journal of Cellular Physiology, v. 181, pp. 179-187 (1999) reprint. Please see ref. 38 for the most current review on HIT proteins.
  23. A. Draganescu, S.C. Hodawadekar, K.R. Gee & C. Brenner, “Fhit-Nucleotide Specificity Probed with Novel Fluorescent and Fluorogenic Substrates,” Journal of Biological Chemistry, v. 275, pp. 4555-4560 (2000) reprint The reagents can be ordered from Molecular Probes, Inc.
  24. C. Brenner, “A Cultivated Taste for Yeast,” Genome Biology, v. 1, pp. reviews103.1-103.4 (2000) reprint
  25. C. Brenner, “Fhitness and Cancer in the Mouse,” Trends in Genetics, v. 16, 294 (2000) reprint
  26. H.C. Pace, S.C. Hodawadekar, A. Draganescu, J. Huang, P. Bieganowski, Y. Pekarsky, C.M. Croce & C. Brenner, “Crystal Structure of the Worm NitFhit Rosetta Stone Protein Reveals a Nit Tetramer Binding Two Fhit Dimers,” Current Biology, v. 10, pp. 607-617 (2000). View NitFhit at the Protein Data Bank reprint
  27. C. Brenner, “Condensing the RNA World,” Trends in Biochemical Sciences, v. 25, 485 (2000) reprint
  28. J.R. Boyne, H.M. Yosuf, P. Bieganowski, C. Brenner & C. Price, “Yeast Myosin Light Chain, Mlc1p, Interacts with Both IQGAP and Class II Myosin to Effect Cytokinesis,” Journal of Cell Science, v. 113, pp. 4533-4543 (2000) reprint
  29. H.C. Pace & C. Brenner, “The Nitrilase Superfamily: Classification, Structure and Function,” Genome Biology, v. 2, pp. reviews0001.1-0001.9 (2001) reprint. See supplemental data file at Genome Biology.
  30. L. Daheron, T. Zenz, L.D. Siracusa, C. Brenner & B. Calabretta, ” Molecular Cloning of Ian4: a BCR/ABL-Induced Gene that Encodes an Outer Membrane Mitochondrial Protein with GTP-Binding Activity, ” Nucleic Acids Research, v. 29, pp. 1308-1316 (2001) reprint
  31. A.G. McLennan, L.D. Barnes, G.M. Blackburn, C. Brenner, A. Guranowski, A.D. Miller, J.M. Rovira, P. Rotllan, B. Soria, J.A. Tanner & A. Sillero, “Recent Developments in the Study of the Intracellular Function of Diadenosine Polyphosphates,” Drug Development Research, v. 52, pp. 249-259 (2001) reprint
  32. J.M. Varnum, J. Baraniak, R. Kaczmarek, W.J. Stec & C. Brenner, “Di-, Tri- and Tetra-5-O-Phosphorothioadenosyl Substituted Polyols as Inhibitors of Fhit: Importance of the Alpha-Beta Bridging Oxygen and Beta Phosphorus Replacement, ” BMC Chemical Biology, v. 1, 3 (2001) reprint
  33. C. Brenner, “FHIT” in the Wiley Encyclopedia of Molecular Medicine, v. 2, Thomas E. Creighton, Ed., pp. 1274-1275 (2001) reprint
  34. D.H. Klaubert, K.R. Gee & C. Brenner, “Phosphate-Bound Polyazaindacene Derivatives of Nucleotides,” US Patent 6,323,186, (2001) reprint
  35. S.K. Milano, H.C. Pace, Y.-M. Kim, C. Brenner & J. Benovic, “Scaffolding Functions of Arrestin-2 Revealed by Crystal Structure and Mutagenesis,” Biochemistry, v. 41, pp. 3321-3328 (2002). View Arrestin-2 at the Protein Data Bank reprint
  36. P. Bieganowski, P.N. Garrison, S.C. Hodawadekar, G. Faye, L.D. Barnes & C. Brenner, “Adenosine Monophosphoramidase Activity of Hint and Hnt1 Supports Function of Kin28, Ccl1 and Tfb3, ” Journal of Biological Chemistryv. 277, pp. 10852-10860 (2002) reprint
  37. M. Rubio-Texeira, J.M. Varnum, P. Bieganowski & C. Brenner, “Control of Dinucleoside Polyphosphates by the FHIT-Homologous HNT2 Gene, Adenine Biosynthesis, and Heat Shock in Saccharomyces cerevisiae,” BMC Molecular Biology, v. 3, 7 (2002) reprint
  38. C. Brenner, “Hint, Fhit and GalT: Function, Structure, Evolution and Mechanism of Three Branches of the Histidine Triad Superfamily of Nucleotide Hydrolases and Transferases,” Biochemistry, v. 41, pp. 9003-9014 (2002) reprint
  39. C. Brenner, “Catalysis in the Nitrilase Superfamily,” Current Opinion in Structural Biology, v. 6, pp. 775-782 (2002) reprint
  40. A. Owczarek, R. Kaczmarek, B. Mikolajczyk, E. Wasilewska, D. Korczynski, J. Baraniak, M. Koziolkiewicz, W.J. Stec WJ & C. Brenner, “Stereochemical analysis of diastereomeric 1,3-bis(adenosine-5′-O-phosphorothioyl)glycerols,”Nucleosides, Nucleotides and Nucleic Acids, v. 22, pp. 797-9 (2003).
  41. F. Trapasso, A. Krakowiak, R. Cesari, J. Arkles, S. Yendamuri, H. Ishii, A. Vecchione, T. Kuroki, P. Bieganowski, H.C. Pace, K. Huebner, C.M. Croce & C. Brenner, “Designed FHIT Alleles Establish that Fhit-Induced Apoptosis in Cancer Cells is Limited by Substrate-Binding,” Proceedings of the National Academy of Sciences, v. 100, pp. 1592-1597 (2003) reprint
  42. H.C. Pace & C. Brenner, “Feminizing Chicks: A Model for Avian Sex Determination Based on Titration of Hint Enzyme Activity and the Predicted Structure of an Asw-Hint Heterodimer,” Genome Biology, v. 4, R18 (2003). Download reprint
  43. P. Bieganowski, H.C. Pace & C. Brenner, “Eukaryotic NAD+ Synthetase Qns1 Contains an Essential, Obligate Intramolecular Thiol Glutamine Amidotransferase Domain Related to Nitrilase,” Journal of  Biological Chemistry, v. 278, pp. 33049-33055 (2003) reprint
  44. P. Bieganowski & C. Brenner, “The Reported Human NADsyn2 is Ammonia-Dependent NAD+ synthetase from a Pseudomonad,” Journal of Biological Chemistry, v. 278, pp. 33056-33059 (2003) reprint
  45. C. Brenner, “Subtleties Among Subtilases: Structural Biology of Kex2 and Furin-Related Prohormone Convertases,”EMBO Reports, v. 4, pp. 937-938 (2003) reprint
  46. D.A. Kwasnicka, A. Krakowiak, C. Thacker, C. Brenner & S.R. Vincent, ” Coordinate Expression of NADPH-Dependent Flavin Reductase, FRE-1, and Hint-Related 7meGMP-Directed Hydrolase, DCS-1,” Journal of Biological Chemistry, v. 278, pp. 39051-39058 (2003) reprint
  47. A. Krakowiak, H.C. Pace, G. Michael Blackburn, M. Adams, A. Mekhalfia, R. Kaczmarek, J. Baraniak, W.J. Stec & C. Brenner, “Biochemical, Crystallographic and Mutagenic Characterization of Hint, the AMP-Lysine Hydrolase, with Novel Substrates and Inhibitors,” Journal of Biological Chemistry, v. 279, pp. 18711-18716 (2004). View Hint-N-ethylsulfamoyl adenosine at the Protein Data Bank reprint
  48. C. Brenner, “Precariously on the Cusp of Oncogenomics,” chapter 1 of Oncogenomics: Molecular Approaches to Cancer, C. Brenner and D. Duggan, Eds., John Wiley & Sons, (2004). View the Oncogenomics poster the site at Wiley, or Amazonbook review in the New England Journal of Medicine.
  49. T.M. Maiolatesi & C. Brenner, “Chemical and Genetic Methods to Validate Targets in Non-Mammalian Organisms,” chapter 10 of Oncogenomics: Molecular Approaches to Cancer, C. Brenner and D. Duggan, Eds., John Wiley & Sons, (2004). View the Oncogenomics poster, the site at Wiley, or Amazonbook review in the New England Journal of Medicine.
  50. P. Bieganowski & C. Brenner, “Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans,” Cell, v. 117, pp. 495-502 (2004). Download reprint
  51. P. Bieganowski, K. Shilinski, P.N. Tsichlis & C. Brenner, “Cdc123 and Checkpoint Forkhead Associated With RING Proteins Control the Cell Cycle By Controlling eIF2gamma Abundance, “Journal of Biological Chemistry,” v. 279, pp. 44656-44666 (2004) reprint
  52. C. Brenner, “Chemical Genomics in Yeast,” Genome Biology, v. 5, 240 (2004) reprint
  53. P.M. Clements, C. Breslin, E.D. Deeks, P.J. Byrd, L. Ju, P. Bieganowski, C. Brenner, M.-C. Moreira, A.M.R. Taylor & K.W. Caldecott, “The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4,” DNA Repair, v. 3, pp. 1493-1502 (2004)reprint
  54. K.P. Parks, H. Seidle, N. Wright, J.B. Sperry, P. Bieganowski, K. Howitz, D.L. Wright & C. Brenner, “Altered Specifity of Hint-W123Q Supports a Role for Hint Inhibition by Asw in Avian Sex Determination,” Physiological Genomics, v. 20, pp. 12-14 (2004) reprint and  supplemental data
  55. T.-F. Chou, P. Bieganowski, K. Shilinski, J. Cheng, C. Brenner & C.R. Wagner, “31P NMR and Genetic Analysis Establish hinT as the only E. coli Purine Nucleoside Phosphoramidase and as Essential for Growth Under High Salt Conditions,”  Journal of Biological Chemistry, v. 280, pp. 15356-15361 (2005) reprint and supplemental data
  56. H.F. Seidle, P. Bieganowski & C. Brenner, “Disease-Associated Mutations Inactivate AMP-Lysine Hydrolase Activity of Aprataxin,” Journal of Biological Chemistry, v. 280, pp. 20927-20931 (2005) View or download JBC Paper of the Week Summary.  reprint and supplemental data
  57. C. Brenner, “Evolution of NAD Biosynthetic Enzymes,” Structure, v. 13, pp. 1239-1240 (2005) reprint
  58. K.L. Bogan & C. Brenner, “Fhit,” AfCS-Nature Molecule Pages (2006) DOI: 10.1038/mp.a000914.01
  59. S.K. Milano, Y.-M. Kim, F.P. Stefano, J.L. Benovic & C. Brenner, “Nonvisual Arrestin Oligomerization and Cellular Localization are Regulated by Inositol Hexakisphosphate Binding,” Journal of Biological Chemistry, v. 281, pp. 9812-9823 (2006) View Arrestin-2-IP6 entry at the Protein Data Bank.  reprint and supplemental data
  60. J. Martin, F. Magnino, K. Schmidt, A.-C. Piguet, J.-S. Lee, D. Semela, M.V. St-Pierre, A. Ziemiecki, D. Cassio, D. Mochly-Rosen, C. Brenner, S.S. Thorgeirsson & J.-F. Dufour, “Hint2, a Mitochondrial Apoptotic Sensitizer Downregulated in Hepatocellular Carcinoma,” Gastroenterology, v. 130, pp. 2179-2188 (2006) reprint
  61. P. Bieganowski, H.F. Seidle, M. Wojcik & C. Brenner, “Synthetic Lethal and Biochemical Analyses of NAD and NADH Kinases in Saccharomyces cerevisiae Establish Separation of Cellular Functions,” Journal of Biological Chemistry, v. 281, pp. 22439-22445 (2006) reprint
  62. A.B. Parsons, A. Lopez, I.E. Givoni, D.E. Williams, C.A. Gray, J. Porter, G. Chua, R. Sopko, R.L. Brost, C.-H. Ho, J. Wang, T. Ketela, C. Brenner, J.A. Brill, G.E. Fernandez, T.C. Lorenz, G.S. Payne, S. Ishihara, Y. Ohya, B. Andrews, T.R. Hughes, B.J. Frey, T.R. Graham, R.J. Andersen & C. Boone, “Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast,” Cell, v. 126, pp. 611-6255 (2006) reprint. Examine supplementary data.
  63. M. Wojcik, H.F. Seidle, P. Bieganowski & C. Brenner, “Glutamine-Dependent NAD+ synthetase: How a Two-Domain, Three-Substrate Enzyme Avoids Waste,” Journal of Biological Chemistry, v. 281, pp. 33395-33402 (2006) reprint
  64. P. Belenky, K.L. Bogan & C. Brenner, “NAD+ Metabolism in Health and Disease,” Trends in Biochemical Sciences, v. 32, pp. 12-19 (2007) reprint
  65. C.L. Linster, T.A. Gomez, K.C. Christensen, L.N. Adler, B.D. Young, C. Brenner & S.G. Clarke, “Arabidopis VTC2 Encodes GDP-L-Galactose Phosphorylase, the Last Unknown Enzyme in the Smirnoff-Wheeler Pathway to Ascorbic Acid in Plants,” Journal of Biological Chemistry, v. 282, pp. 18879-18885 (2007) reprintView JBC Paper of the Week Summary.
  66. P. Belenky, F.G. Racette, K.L. Bogan, J.M. McClure, J.S. Smith & C. Brenner, “Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+,” Cell, v. 129, pp. 473-484 (2007) reprint and supplementary data. Read Leading Edge Preview in CellResearch Highlights in Nature and Spotlight in ACS Chemical Biology
  67. M.E. Robu, J.D. Larson, A. Nasevicius, S. Beiraghi, C. Brenner, S.A. Farber & S.C. Ekker, “p53 Activation by Knockdown Technologies,” PLOS Genetics, v. 3, issue 5, e78 (2007) reprint
  68. C. Brenner, “Histidine Triad (HIT) Superfamily,” Encyclopedia of Life Sciences, (2007) John Wiley & Sons, Ltd: Chichester
  69. W. Tempel, W.M. Rabeh, K.L. Bogan, P. Belenky, M. Wojcik, H.F. Seidle, L. Nedyalkova, T. Yang, A.A. Sauve, H.-W. Park & C. Brenner, “Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+,” PLoS Biology, v. 5, issue 10, e263 (2007) View Nrk1-ADPNrk1-NRNrk1-AppNHp+NRNrk1-NMN, and Nrk1-tiazofurin entries at the Protein Data Bank. reprint and supporting information
  70. R.S. Fuller, R.A. Bambara, T. Baker, B. Funnell, E. Wahle, M. O’Donnell, D. Kaiser, K. Skarstad, B. Konforti, S. Maki, T. Katayama, K. Sekimizu, J.H. Weiner, R.W. Davis, L. Rowen, M.F. Goodman, J. Spudich, S. Pfeffer, C.C. Richardson, P. Polaczek, R. Calendar, R. Kolodner, J. Griffith, B. Stillman, P. Modrich, C. Brenner & C. Yanofsky, “A Tribute to Arthur Kornberg, 1918-2007,” Nature Structural & Molecular Biology, v. 15, pp. 2-17 (2008) reprint
  71. G.L. Loring, K.C. Christensen, S.A. Gerber & C. Brenner, “Yeast Chfr Homologs Retard Cell Cycle at G1 and G2/M via Ubc4 and Ubc13/Mms2-Dependent Ubiquitination,” Cell Cycle, v. 7, pp. 95-105 (2008) reprint and supplementary data
  72. P.A. Belenky, T.G. Mogu & C. Brenner, “S. cerevisiae YOR071C Encodes the High Affinity Nicotinamide Riboside Transporter, Nrt1,” Journal of Biological Chemistry, v. 283, pp. 8075-8079 (2008) reprint and supplementary data
  73. K.L. Bogan & C. Brenner, “Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition,” Ann Review Nutrition, v. 28, pp. 115-130 (2008) reprint
  74. C.L. Linster, L.T. Adler, K. Webb, K.C. Christensen, C. Brenner & S.G. Clarke, “A Second GDP-L-Galactose Phosphorylase in Arabidopsis en Route to Vitamin C: Covalent Intermediate and Substrate Requirements for the Conserved Reaction,” Journal of Biological Chemistry, v. 283, pp. 18483-18492 (2008) reprint
  75. L. Brooks,III, E.G. Heimsath, Jr., G.L. Loring & C. Brenner, “FHA-RING Ubiquitin Ligases in Cell Division Cycle Control,” Cellular and Molecular Life Sciences, v. 65, cover and pp. 3458-3466 (2008) reprint
  76. P. Belenky, K.C. Christensen, F. Gazzaniga, A.A. Pletnev & C. Brenner, “Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals: Quantitative Basis for Urh1 and Purine Nucleoside Phosphorylase Function in NAD+ Metabolism,” Journal of Biological Chemistry, v. 284, pp. 158-164 (2009) reprint
  77. P. Bieganowski & C. Brenner, “Nicotinamide Riboside Kinase Compositions and Methods for Using the Same,” Australian Patent 2005211773, (2009). 
  78. F. Gazzaniga, R. Stebbins, S. Z. Chang, M.A. McPeek & C.Brenner, “Microbial NAD Metabolism: Lessons from Comparative Genomics, “Microbiology and Molecular Biology Reviews, v. 73, pp. 529-541 (2009) reprint
  79. K.L. Bogan, C. Evans, P. Belenky, P. Song, C.F. Burant, R.T. Kennedy & C. Brenner, ” Identification of Isn1 and Sdt1 as Glucose and Vitamin-regulated NMN and NaMN 5′-nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside,” Journal of Biological Chemistry, v. 284, pp. 34861-34869 (2009) reprint and supplementary data
  80. C. Evans, K.L. Bogan, P. Song, C.F. Burant, R.T. Kennedy & C. Brenner, “NAD+ Metabolite Levels as a Function of Vitamins and Calorie Restriction: Evidence for Different Mechanisms of Longevity,” BMC Chemical Biology, v. 10, 2 (2010) reprint and supplementary data
  81. K.L. Bogan & C. Brenner, “5′-Nucleotidases and their New Roles in NAD+ and Phosphate Metabolism,” New Journal of Chemistry, v. 34, pp. 845-853 (2010) reprint
  82. F. Syeda, R.L. Fagan, M. Wean, G.V. Awakumov, J.R. Walker, S. Xue, S. Dhe-Paganon & C. Brenner, “The RFTS Domain is a DNA-Competitive Ingibitor of Dnmt1,” Journal of Biological Chemistryv. 286, pp. 15344-15351 ( 2011) reprint
  83. C. Brenner, “On the Nonspecific Degradation of NAD+ to Nicotinamide Riboside,” Journal of Biological Chemistry, v. 286, p. le5 (2011) reprint
  84. P. Belenky, R. Stebbins, K.L. Bogan, C.R. Evans & C. Brenner, “Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production,” PLoS ONE, v. 6, p. e19710 (2011) reprint
  85. J. Boylston & C. Brenner, “FHIT,” Encyclopedia of Signaling Molecules, S. Choi, ed, chapter 68, part 7, pp. 613-616 (2012) DOI:10.1007/978-1-4419-0461-4_68.  reprint
  86. C. Brenner, P. Belenky & K.L. Bogan, “Yeast Strain and Method for Using the Same to Produce Nicotinamide Riboside,” US Patent 8,114,626,  (2012) reprint
  87. C. Brenner & D. Ringe, “Response to the New MCAT: ASBMB Premedical Curriculum,” American Society for Biochemistry and Molecular Biology, v. 11, pp. 12-14 (2012) reprint
  88. R.R. Midtkandal, P. Redpath, S.A.J. Trammell, S.J.F. Macdonald, C. Brenner & M.E. Migaud, “Novel synthetic route to the C-nucleoside, 2-deoxy benzamide riboside,” Bioorganic & Medicinal Chemistry Letters v. 22, pp. 5204-7 (2012) reprint
  89. C. Brenner, “Nicotinamide riboside kinase compositions and methods for using the same,” US Patent 8,197,807 (2012) reprint
  90. C. Brenner, “Changes in Chemistry and Biochemistry Education:  Creative Responses to MCAT Revisions in the Age of the Genome,” Biochemistry and Molecular Biology Education, v. 41, pp. 1-4 (2013) reprint
  91. C. Brenner, “Nicotinamide riboside kinase compositions and methods for using the same,” US Patent 8,383,086, (2013) reprint
  92. K.L. Bogan & C. Brenner, “Biochemistry: Niacin/NAD(P),” Encyclopedia of Biological Chemistry, W.J. Lennarz & M.D. Lane, v. 3, pp.172-178, (2013) Waltham, MA: Academic Press. reprint
  93. S.A.J. Trammell & C. Brenner, “Targeted, LCMC-Based Metabolomics for Quantitative Measurement of NAD+ Metabolites,” Computational and Structural Biotechnology Journal, v. 4, e201301012 (2013) DOI:10.5936/csbj.201301012 reprint
  94. C. Brenner, “Rethinking Premedical and Health Professional Curricula in Light of MCAT 2015,” Journal of Chemical Education, v. 90, pp. 807-812 (2013) DOI:10.1021/ed4002738 reprint
  95. R.L. Fagan, D.E. Cryderman, L. Kopelovich, L.L. Wallrath & C. Brenner, “Laccaic Acid A is a Direct, DNA-Competitive Inhibitor of DNA Methyltransferase 1,” Journal of Biomedical Chemistry, v.288, pp. 23858-23867 (2013) DOI:10.1074/jbc.M113.480517 reprint
  96. C. Brenner, “Demystifying the Chalk Talk,” American Society for Biochemistry and Molecular Biology, v. 12, pp. 33-35 (2013) reprint
  97. S. Ghanta, R.E. Grossmann & C. Brenner, “Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications”  Critical Reviews in Biochemistry and Molecular Biology, v. 48, pp. 561-574 (2013) reprint
  98. P.J. Kennelly, J.S. Bond, B.S. Masters, E.A. Dennis, C. Brenner & D.M. Raben, “Desperately Seeking Flexner: Time to Reemphasize Basic Science in Medical Education” Academic Medicine, v. 88, pp. 1405-1406 (2013) DOI:10.1097/ACM.0b013e3182a225be reprint
  99. R.L. Fagan, M. Wu, F. Chédin & C. Brenner, “An Ultrasensitive High Throughput Screen for DNA Methyltransferase 1-targeted Molecular Probes” PLoS One, v. 11, e78752 (2013) reprint
  100. S-C. Mei & C. Brenner, “NAD as a Genotype-Specific Drug Target” Chemistry & Biology, v. 20, pp. 1307-1308 (2013) reprint
  101. J. Huang, A. Stewart, B. Maity, J. Hagen, R.L. Fagan, J. Yang, D.E. Quelle, C. Brenner & R.A. Fisher, “RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis,” Oncogene, v. 33, pp. 3604-11 (2014) DOI:10.1038/onc.2013.324 reprint
  102. C. Brenner, “Understanding Faculty Salaries,” American Society for Biochemistry and Molecular Biology, v. 13, pp. 28-29 (2014) reprint
  103. C. Brenner, “Metabolism: Targeting a fat-accumulation gene” Nature, v. 508, pp. 194-195 (2014) DOI:10.1038/508194a reprint
  104. C. Brenner, “Histidine Triad Superfamily” Encyclopedia of Life Sciences, John Wiley & Sons Ltd: Chichester (2014) DOI:10.1002/9780470015902.a0020545.pub2.
  105. J.A. Boylston & C. Brenner, “A Knockdown with Smoke Model Reveals Fhit as a Repressor of Heme Oxygenase 1,” Cell Cycle, v. 13, pp. 2913-30 (2014) DOI:10.4161/15384101.2014.946858 reprint
  106. B.-K. Wu, S.-C. Mei & C. Brenner, “RFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation,” Cell Cycle, v. 13, pp. 3222-3231 (2014) DOI:10.4161/15384101.2014.950886 reprint
  107. S.-C. Mei & C. Brenner, “Quantification of Protein Copy Number in Yeast: the NAD+ Metabolome,” PLoS One v. 9, e106496 (2014). DOI:10.1371/journal.pone.0106496 reprint
  108. B.-K. Wu & C. Brenner, “Suppression of TET1-Dependent DNA Demethylation is Essential for KRAS-Mediated Transformation,” Cell Reports, v. 9, pp. 1827-1840 (2014) DOI:10.1016/j.celrep.2014.10.063 reprint
  109. C. Brenner, “Boosting NAD to Spare Hearing,” Cell Metabolism, v. 21, pp.926-927 (2014) DOI:10.1016/j.cmet.2014.11.015 reprint
  110. S.-C. Mei & C. Brenner, “Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous,” PLoS Biology, v. 13, e1002048 (2015) reprint
  111. S.A.J. Trammell & C. Brenner, “NNMT: A Bad Actor in Fat Makes Good in Liver,” Cell Metabolism, v. 22, pp. 200-201 (2015) DOI:10.1016/j.cmet.2015.07.017 reprint
  112. S.A.J. Trammell, L. Yu, P. Redpath, M.E. Migaud & C. Brenner, “Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk,” The Journal of Nutrition, v. 146, pp. 957-963 (2016) DOI:10.3945/jn.116.230078 reprint
  113. S.A.J. Trammell, B.J.Weidemann, A.Chadda, M.S. Yorek, A. Holmes, L.J.Coppey, A. Obrosov, R.H. Kardon, M.A. Yorek & C. Brenner, “Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice,” Scientific Reports, v. 6, 26933 (2016) DOI:10.1038/srep26933 reprint
  114. S.A.J Trammell, M.S. Schmidt, B.J. Weidemann, P. Redpath, F. Jaksch, R.W. Dellinger, Z. Li, E.D. Abel, M.E. Migaud & C. Brenner, “Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.” Nature Communications, v. 7, pp. 12948 (2016) DOI:10.1038/ncomms12948 reprint
  115. J. Ratajczak, M. Joffraud, S.A.J. Trammell, R. Ras, N. Canela, M. Boutant, S.S. Kulkarni, M. Rodrigues, P. Redpath, M.E. Migaud, J. Auwerx, O. Yanes, C. Brenner & C. Canto, “NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.” Nature Communications, v. 7, 13103 (2016) DOI:10.1038/ncomms13103 reprint
  116. J.L. Wilsbacher, M. Cheng, D. Cheng, S.A.J. Trammell, Y. Shi, J. Guo, S.L. Koeniger, P.J. Kovar, Y. He, S. Jagadeeswaran, H.R. Heyman, B.K. Sorensen, R.F. Clark, T.M. Hansen, K.L. Longenecker, D. Raich,  A.V. Korepanova, D.L. Towne, V.C. Abraham, H. Tang, S.M. McLoughlin, M.L. Curtin, M.R. Michaelides, D. Maag, F.G. Buchanan, W. Gao, S.H. Rosenberg, C. Brenner & C. Tse, “Discovery and Characterization of Novel, Orally Bioavailable Non-substrate and Substrate NAMPT Inhibitors,” Molecular Cancer Therapeutics, v. 16, pp. 1236-1245 (2017) DOI:10.1158/1535-7163.MCT-16-0819 reprint
  117. M.V. Hamity, S.R. White, R.Y. Walder, M.S. Schmidt, C. Brenner & D.L. Hammond, “Nicotinamide Riboside, a Form of Vitamin B3 and NAD+ Precursor, Relieves the Nociceptive and Aversive Dimensions of Paclitaxel-induced Peripheral Neuropathy in Female Rats,” Pain, v. 158, pp. 962–972 (2017) DOI:10.1097/j.pain.0000000000000862 reprint
  118. R. Fletcher, J. Ratajczak, C.L. Doig, L.A. Oakey, R.Callingham, G. da Silva Xavier, A. Garten, Y.S. Elhassan, P. Redpath, M.E. Migaud, A. Philp, C. Brenner, C. Canto & G.G. Lavery, “Nicotinamide Riboside Kinases Display Redundancy in Mediating Nicotinamide Mononucleotide and Nicotinamide Riboside Metabolism in Skeletal Muscle Cells,” Molecular Metabolism, v. 6 (2017) DOI:10.1016/j.molmet.2017.05.011 reprint
  119. P. Vaur, B. Brugg, M. Mericskay, Z. Li, M.S. Schmidt, D. Vivien, C. Orset, E. Jacotot, C. Brenner & E. Duplus, “Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration,” FASEB Journal (2017) DOI:10.1096/fj.201700221RR reprint
  120. S.Thakur & C. Brenner, “KRAS-driven miR-29b Expression is Required for Tumor Suppressor Gene Silencing,” Oncotarget, v. 8(43), pp. 74755-74766 (2017) DOI:10.18632/oncotarget.20364 reprint
  121. S. Sato, G. Solanas, F.O. Peixoto, L. Bee, A. Symeonidi, M.S. Schmidt, C. Brenner, S. Masri, S.A. Benitah &  P. Sassone-Corsi, “Circadian Reprogramming Identifies Metabolic Pathways of Aging,” Cellv. 170(4), pp. 664-677 (2017) DOI:10.1016/j.cell.2017.07.042 reprint
  122. N. Diguet, S.A.J. Trammell, C. Tannous, R. Deloux, J. Piquereau, N. Mougenot, A. Gouge, M. Gressette, B. Manoury, J. Blanc, M. Breton, J.F. Decaux, G. Lavery, I. Baczkó, J. Zoll, A. Garnier, Z. Li, C. Brenner & M. Mericskay, “Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy,” Circulation, v. 137(21), pp. 2256-2273 (2018) DOI:10.1161/CIRCULATIONAHA.116.026099 reprint. Read accompany commentary
  123. Fangmann, E.M. Theismann, K. Türk, D.M. Schulte, I. Relling, K. Hartmann, J.K. Keppler, J.R. Knipp, A. Rehman, F.A. Heinsen, A. Franke, L. Lenk, S. Freitag-Wolf, E. Appel, S. Gorb, C. Brenner, D. Seegert, G.H. Waetzig, P. Rosenstiel, S. Schreiber, K. Schwarz & M. Laudes, “Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans,” Diabetes Care, v. 41(3), pp. 398-405 (2018) DOI:10.2337/dc17-1967 reprint
  124. D.S. Matasic, C. Brenner & B. London, “Emerging Potential Benefits of Modulating NAD+ Metabolism in Cardiovascular Disease,” American Journal of Physiology, v. 314(4), pp. H839-H852 (2018) DOI:10.1152/ajpheart.00409.2017 reprint
  125. O.L. Dollerup, B.Christensen, M. Svart, M.S. Schmidt, K. Sulek, S. Ringgaard, H. Stødkilde-Jørgensen, N. Møller, C. Brenner, J.T. Treebak &N. Jessen, “A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects,” Journal of Clinical Nutritionv. 108(2), pp. 343-353 (2018) DOI:10.1093/ajcn/nqy132 reprint
  126. S.J. Mitchell, M. Bernier, M.A. Aon, S. Cortassa, E.Y. Kim, E.F. Fang, H.H. Palacios, Ali A1, I. Navas-Enamorado, A. Di Francesco, T.A. Kaiser, T.B. Waltz, N. Zhang, J.L. Ellis, P.J. Elliott, D.W. Frederick, V.A. Bohr, M. S. Schmidt, C. Brenner, D.A. Sinclair, A. A. Sauve, J.A. Baur & R. de Cabo, “Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice,” Cell Metabolism, v. 27(3):667-676.e4 (2018) DOI:10.1016/j.cmet.2018.02.001 reprint
  127. H.W. Liu, C.B. Smith, M.S. Schmidt, X.A. Cambronne, M.S. Cohen, M.E. Migaud, C. Brenner & R.H. Goodman, “Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration,” Proceedings of the National Academy of Sciences, v. 115 (42), pp. 10654-10659 (2018) DOI:10.1073/pnas.1809392115 reprint
  128. C. Brenner & A.C. Boileau, “Pterostilbene Raises Low Density Lipoprotein Cholesterol in People,” Clinical Nutrition, v. 38(1), pp.480-481 (2019) DOI:10.1016/j.clnu.2018.10.007 reprint
  129. P. H. Ear, A. Chadda, S. B. Gumusoglu, M. S. Schmidt, S. Vogeler, J. Malicoat, J. Kadel, M. M. Moore, M. E. Migaud, H. E. Stevens & C. Brenner, “Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring,” Cell Reports, v. 26 (4), pp. 969-983 (2019) DOI:10.1016/j.celrep.2019.01.007 reprint
  130. W. Shi, M.A. Hegeman, A. Doncheva, I. van der Stelt, M. Bekkenkamp-Grovenstein, E. M. van Schothorst, C.Brenner, V. C. J. de Boer & J. Keijer, “Transcriptional Response of White Adipose Tissue to Withdrawal of Vitamin B3,” Molecular Nutrition & Food Research, v. 63 (2019) DOI:10.1002/mnfr.201801100 reprint
  131. D. Conze,  C. Brenner, & C.L. Kruger, “Safety and Metabolism of Long-Term Administration of Niagen (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults,” Scientific Reports, v. 9, 9772 (2019) DOI:10.1038/s41598-019-46120-z reprint
  132. M.S. Schmidt, & C. Brenner, “Absence of evidence that Slc12a8 Encodes a Nicotinamide Mononucleotide Transporter,” Nature Metabolism, v. 1, pp. 660-661 (2019) DOI:10.1038/s42255-019-0085-0 reprint
  133. Y.S. Elhassan, K. Kluckova, R.S. Fletcher, M.S. Schmidt, A. Garten, C.L. Doig, D.M. Cartwright, L. Oakey, C.V. Burley, N Jenkinson, M. Wilson, S.J.E. Lucas, I. Akerman, A. Seabright, Y.C. Lai, D.A. Tennant, P. Nightingale, G.A. Wallis, K.N. Manolopoulos, C. Brenner, A. Philip, G.G. Lavery, “Nicotinamide Riboside Augments the Human Skeletal Muscle NAD Metabolome and Induces Transcriptomic ad Anti-inflammatory Signatures in Aged Subjects: a Placebo-controlled, Randomized Trial,” Cell Reports, v. 28, 7 (2019) DOI:10.1016/j.celrep.2019.07.043 reprint 
  134. C. Brenner, “Why Is Mom Stressed: Homeorhesis as the Potential Problem and Nicotinamide Riboside as the Potential Solution,” Journal of Experimental Neuroscience v. 13, pp. 1-3  (2019) DOI:10.1177/1179069519869679 reprint
  135. N.R. Fons, R.K. Sundaram, G.A. Breuer, S. Peng, R.L. McLean, A.N. Kalathil, M.S. Schmidt, D.M. Carvalho, A. Mackay, C. Jones, A.M. Carcaboso, J. Nazarian, M.E. Berens, C. Brenner, & R.S. Bindra., “PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma,” Nature Communications, v. 10, 3790 (2019) DOI:10.1038/s41467-019-11732-6 reprint
  136. D.S. Matasic, J-T. Yoon, H. Mehdi, J.M. McLendon, M.S. Schmidt, A.M. Greiner, P. Quinones, G.M. Morgan, R. Bourdreau, K. Irani, C. Brenner & B. London., “Modulation of the Cardiac Sodium Channel Nav1.5 Peak and Late Currents by NAD+ Precursors,” Journal of Molecular and Cellular Cardiology., Journal of Molecular and Cellular Cardiologyv. 141, pp. 70-81, (2020) DOI:10.1016/j.yjmcc.2020.01.013 reprint
  137. E. Pirinen, M. Auranen, N. Khan, V. Brilhante, N. Urho, A. Pessia, A. Hakkarainen, J. Kuula, U. Heinonen, M.S. Schmidt, K. Haimilahti, P. Piirila, N. Lundbom, M.R. Taskinen, C. Brenner, V. Velagapudi, K. Pietilainen & A. Suomalainen, “Niacin Cures Systematic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy,” Cell Metabolism, v. 31, pp. 1078-1090 (2020) DOI:10.1016/j.cmet.2020.04.008 reprint
  138. D.C. Levine, H. Hong, K.M. Ramsey, A.H. Affinati, M.S. Schmidt, J. Cedernaes, C. Omura, C. Lee, C. Brenner, C.B. Peek & J. Bass. “NAD+ Controls Circadian Reprogramming Through PER2 Nuclear Translocation to Counter Aging,” Molecular Cellv. 78 pp. 835-849 (2020) DOI:10.1016/j.molcel.2020.04.010 reprint
  139. N.T. Fluharty & C. Brenner, “Fat Mobilization Without Weight Loss is a Potentially Rapid Response to Nicotinamide Riboside in Obese People: It’s Time to Test with Exercise,” American Journal of Clinical Nutrition, v, 112, pp. 243-244 (2020) DOI:10.1093/ajcn/nqaa109 reprint
  140. C.D. Heer & C. Brenner, “Letting off Electrons to Cope with Metabolic Stress,” Nature Metabolism, v. 2, pp. 485-486 (2020) DOI:10.1038/s42255-020-0207-8  reprint
  141. R. Parker, M.S. Schmidt, O. Cain, B. Gunson & C. Brenner, “The NAD+ Metabolome is Functionally Depressed in Patients Undergoing Liver Transplantation for Alcohol-related Liver Disease,” Hepatology Communications, v. 4, pp.1183-1192 (2020) DOI:10.1002/hep4.1530 reprint
  142. M. Gerasimenko, S. Cherepanov, K. Furuhara, O. Lopatina, A. Salmina, A. Shabalova, C. Tsuji, S. Yokoyama, K. Ishihara, C. Brenner & H. Higashida, “Nicotinamide Riboside Supplementation Corrects the Deficits in Oxytocin, Sociability and Anxiety of CD157 Mutants in a Mouse Model of Autism Spectrum Disorder,” Scientific Reports, v. 10, 10035 (2020) DOI:10.1038/s41598-019-57236-7 reprint
  143. B.C. Gilmour, R. Gudmundsrud, J. Frank, A. Hov, S. Lautrup, Y. Aman, H. Røsjø, C. Brenner, M. Ziegler, O.B. Tysnes, C. Tzoulis, T. Omland, A. Søraas, T. Holmøy, L.H. Bergersen, J. Storm-Mathisen, H. Nilsen & E.F. Fang, “Targeting NAD+ in Translational Research to Relieve Diseases and Conditions of Metabolic Stress and Ageing,” Mechanisms of Ageing and Developmentv. 186, 111208 (2020) DOI:10.1016/j.mad.2020 reprint
  144. T.S. Nam, D.R. Park, S.-Y. Rah, T.G. Woo, H.T. Chung, C. Brenner & U.-H. Kim. “Interleukin-8 drives CD38 to form NAADP from NADP+ and NAAD in the endolysosomes to mobilize Ca2+ and effect cell migration” FASEB Journal, v. 34, pp. 12565-12576 (2020) DOI:10.1101/2020.03.24.004739 reprint 
  145. X. Zhang, N.F. Henneman, P.E. Girardot, J.T. Sellers, M.A. Chrenek, Y. Li, J.Wang, C. Brenner, J.M. Nickerson & J.H. Boatright, “Systemic Treatment with Nicotinamide Riboside is Protective in a Mouse Model of Light-Induced Retinal Degeneration” Investigative Ophthalmology & Visual Science, v. 61, 47 (2020) DOI:10.1167/iovs.61.10.47  reprint
  146. C.D. Heer, D.J. Sanderson, L.S. Voth, Y M.O. Alhammad, M.S. Schmit, S.A.J. Trammell, S. Perlan, M.S. Cohen, A.R. Fehr & C. Brenner,  “Coronavirus infection and PARP expression dysregulate the NAD Metabolome: an actionable component of innate immunity” Journal of Biological Chemistry, v. 295, pp. 17986-17996 (2020) DOI:10.1074/jbc.RA120.015138 reprint
  147. Y. Takaso, M. Noda, T. Hattori, J. Roboon, M. Hatano, H. Sugimoto, C. Brenner, Y. Yamamoto, H. Okamoto, H. Higashida, M. Ito, T. T. Yoshizaki & O. Hori, “Deletion of CD38 and Supplementation of NAD+ Attenuate Axon Degeneration in a Mouse Facial Nerve Axotomy Model,” Scientific Reports, v.10, 17795 (2020) DOI:10.1038/s41598-020-73984-3  reprint 
  148.  A.J. Covarrubias,  A. Kale, R. Perrone, J.A. Lopez-Dominguez, A.O. Pisco, H.G. Kassler, M.S. Schmidt, I. Heckenbach, R. Kwok, C.D. Wiley, H.S Wong, I.J. Kim, E. Silva, K. Vitangcol, K.O. Shin, Y.M. Lee, R. Riley, I. Ben-Sahra, M. Ott, B. Schilling. M. Scheibye-Knudsen, K. Ishihara, S.R. Quake, J. Newman, C. Brenner, J. Campis & E. Verdin, “Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages,” Nature Metabolism, v. 2, pp. 1265-1283 (2020) DOI:10.1038/s42255-020-00305-3 reprint 
  149. R. Ghugari, S. Tsao, M. Schmidt, E. Bonneil, C. Brenner & A. Verreault “Mechanisms to Reduce the Cytotoxicity of Pharmacological Nicotinamide Concentrations in the Pathogenic Fungus Candida Albicans,” FEBS Journal, v. 288, pp. 3478-3506 (2021) DOI:10.1111/febs.15687 reprint 
  150. J. Roboon, T. Hattori. H. Ishii, M. Takarada-Iemata. D.T. Nguyen, C.D. Heer, D. O’Meally, C. Brenner, Y. Yamomoto, H. Okamoto, H. Higashida, & O. Hori, “Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD+,” Journal of the International Society for Neurochemistry, v. 158, pp. 311-327 (2021) DOI:10.111/jnc.15367 reprint
  151. C. Brenner, Comment on “Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women,” Science, v. 373 (2021) DOI:10.1123/science.abj1696 reprint
  152. X. Zhang, N. Zhang, M.A. Chrenek, P.E. Girardot, J. Wang, J.T. Sellers, E.E. Geisert, C. Brenner, J.M. Nickerson, J.H. Boatright & Y. Li, ” Systemic treatment with nicotinamide riboside is protective in two mouse models of retinal ganglion cell damage,” Pharmaceutics, v. 13, 893 (2021) DOI:10.3390/pharmaceutics13060893  reprint 
  153. C. Brenner, “Viral infection as an NAD+ battlefield,” Nature Metabolism, v. 4, p. 2-3 (2022) DOI:10.1038/s42255-021-00507-3 reprint
  154. J. Wu, K. Singh, A. Lin, A.M. Meadows, K.Wu, V. Shing, M. Bley, S. Hassanzadeh, R.D. Huffstutler, M.S. Schmidt, L.P. Blanco, R. Tian, C. Brenner, M. Pirooznia, M.J. Kaplan, & M.N. Sack, “Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes,” The Journal of Clinical Investigation, v. 132 (2022) DOI:10.1172/JCI139828 reprint
  155. J.-Y. Yoon, N. Daneshgar, Y. Chu, B. Chen, M. Hefti, A. Vikram, K. Irani, L.-S. Song, C. Brenner, E. D. Abel, B. London, D.-F. Dai, “Metabolic rescue ameliorates mitochondrial encephalo-cardiomyopathy in murine and human iPSC models of Leigh syndrome,” Clinical and Translational Medicine, v. 12, e954 (2022) DOI:10.1002/ctm2.954 reprint
  156. C. Brenner, “Sirtuins are Not Conserved Longevity Genes,” Life Metabolism, v. 1, p. 122-133 (2022) DOI:10.1093/lifemeta/loac025 reprint
  157. C. Brenner, “Longevity Lessons,” Science, v. 377, p. 718 (2022) DOI:10.1126/science.add9130 reprint
  158. C. Brenner, “A Science-Based Review of the World’s Best-Selling Book on Aging,” Archives of Gerontology and Geriatrics, v. 104, 104825 (2023) DOI:10.1016/j.archger.2022.104825 reprint
  159. K.T. Ashing, G. Song, V. Jones, C. Brenner, R. Samoa, “Racial disparities in diabetes prevalence among cancer patients,” Frontiers in Oncology, v. 12 (2023) DOI:10.3389/fonc.2022.1099566 reprint
  160. H. Lapatto, M. Kuusela, A. Heikkinen, M. Muniandy, B. W van der Kolk, S. Gopalakrishnan, N. Pöllänen, M. Sandvik, M.Schmidt, S. Heinonen, S. Saari, J. Kuula, A. Hakkarainen, J. Tampio, Tuure Saarinen, M-R. Taskinen, N. Lundbom, P-H. Groop, M. Tiirola, P. Katajisto, M. Lehtonen, C. Brenner, J. Kaprio, S. Pekkala, M. Ollikainen, K. Pietiläinen, E. Pirinen, “Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study,” Sciences Advances, v. 9 (2023) DOI:10.1126/sciadv.add5163 reprint
  161. E. Jane, M. Reslink, T. Gatesman, M. Halbert, T. Miller, B. Golbourn, S. Casillo, S. Mullett, S. Wendell, U. Obodo, D. Mohanakrishnan, R. Dange, A. Michealraj, C. Brenner, S. Agnihotri, D. Premkumar, I. Pollack, “Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas,” Molecular Oncology, v. 17, p 1821-1843 (2023) DOI:10.1002/1878-0261.13427 reprint
  162. M.E. Orr, E. Kotkowski, P. Ramirez, D. Blair-Kelps, Q. Liu, C. Brenner, M.S. Schmidt, P.T. Fox, A. Larbi, C. Tan, G. Wong, J. Gelfond, B. Frost, S. Espinoza, N. Musi, B. Powers, “A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment,” GeroScience, p. 1-18 (2023) DOI:10.1007/s11357-023-00999-9 reprint
  163. Q. Zhang, Z. Li, S. Trammell, M. S. Schmidt, K. M. Pires, J. Cai, Y. Zhang, H. Kenny, S. Boudina, C. Brenner, E. D. Abel, “Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function,” EMBO Journal, (2024) DOI:10.1038/s44318-023-00009-w preprint
  164. I. Norambuena-Soto, Y. Deng, C. Brenner, S. Lavendero, Z. Wang, “NAD in pathological cardiac remodeling: Metabolic regulation and beyond,” BBA – Molecular Basis of Disease, p 167038 (2024) DOI:10.1016/j.bbadis.2024.167038 preprint
  165. J.A. Timmons and C. Brenner, “The information theory of aging has not been tested,” Cell, v.187, pp.1101-11022 (2024) DOI: 10.1016/j.cell.2024.01.013 reprint
 
 

Google Scholar all of Dr. Brenner’s publications.

Addgene Plasmids